Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening.
نویسندگان
چکیده
Influx of calcium through voltage-gated calcium channels (VGCCs) is essential for striatal function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage dependences, and densities resulting in heterogeneous subcellular calcium dynamics. One factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of VGCCs. Aside from voltage-dependent inactivation, VGCCs undergo calcium-dependent inactivation (CDI): inactivating in response to an influx of calcium. CDI is a negative feedback control mechanism; however, its contribution to striatal neuron function is unknown. Furthermore, although the density of VGCC expression changes with development, it is unclear whether CDI changes with development. Because calcium influx through L-type calcium channels is required for striatal synaptic depression, a change in CDI could contribute to age-dependent changes in striatal synaptic plasticity. Here we use whole cell voltage clamp to characterize CDI over developmental stages and across striatal regions. We find that CDI increases at the age of eye opening in the medial striatum but not the lateral striatum. The developmental increase in CDI mostly involves L-type channels, although calcium influx through non-L-type channels contributes to the CDI in both age groups. Agents that enhance protein kinase A (PKA) phosphorylation of calcium channels reduce the magnitude of CDI after eye opening, suggesting that the developmental increase in CDI may be related to a reduction in the phosphorylation state of the L-type calcium channel. These results are the first to show that modifications in striatal neuron properties correlate with changes to sensory input.
منابع مشابه
Title: Calcium Dependent Inactivation of Calcium Channels in the Medial Striatum Increases at Eye 1 Opening 2 3 4 Running Head: Cdi in Striatal Neurons during Development Introduction
22 Influx of calcium through voltage gated calcium channels (VGCCs) is essential for striatal 23 function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage 24 dependences and densities resulting in heterogeneous subcellular calcium dynamics. One 25 factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of 26 VGCCs. Aside fro...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملRegulatory Role of Calcium Channel Blockers on Spontaneous Muscular Activity of Gastrothylax Crumenifer, A Rumen Amphistome
Major proportion of intracellular calcium (Ca 2+ ) is achieved through opening of calcium channels present in the plasma membrane which play an important role in regulating neuromuscular coordination and release of neurotransmitters from nerve terminals. Blockade of these calcium channels adversely affect contractile process and release of neurotransmitters in majority of the neuromuscular prep...
متن کاملThe modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)
Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2015